

Eidgenössisches Finanzdepartement EFD
NCSC

CSIRT BIT & NCSC / GovCERT.ch Seite 1 von 20

Security Report Proximity Scanning

Author: csirt@bit.admin.ch & outreach@govcert.ch
Topic: Security Report for Proximity Tracing Project – Appendix to the Risk Estimation
Date: 28th of May 2020
Classification: TLP WHITE

Content

CONTENT ... 1
DISCUSSION OF FINDINGS .. 2
OVERVIEW ... 2
PROTOCOL ... 2
TECHNICAL IMPLEMENTATION ARCHITECTURE ... 4
INTRODUCTION TO CODE AND CONFIGURATION TESTS ... 5
BACKENDS – CODE AND CONFIGURATION ... 5
BLACK BACKEND .. 5
RED BACKEND ... 6
SMARTPHONE APP CODE: IOS (PRE-GAEN VERSION) ... 7
SMARTPHONE APP CODE: NOTES ABOUT IOS GAEN VERSION .. 11
SMARTPHONE APP CODE: ANDROID (PRE-GAEN VERSION) ... 12
SMARTPHONE APP CODE: NOTES ABOUT ANDROID GAEN VERSION .. 15
KEYCLOAK SERVER ... 16
DOMAIN SECURITY .. 17
TLS CHECKS OF THE ENDPOINTS .. 18
SECURITY HEADERS ON ENDPOINTS .. 19
OUT OF SCOPE THREATS .. 20

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 2 von 20

Discussion of findings

Overview

The following appendix gives an overview of the various vulnerabilities we found and passed
to the project for fixing.

The most important concerns we found were as mentioned in the risk estimation:

• Demasking a user based on traffic monitoring / DNS requests. This has been solved
by using fake POST requests. However, the residual risk that remains is if a user en-
ters the code incorrectly, a distinguishable traffic patterns gets visible.

• Man-in-the-middle attacks using TLS interception, either in transit or on CDN level
which would allow an attacker to identify persons that send in the information that
they are infected. This issue has been solved by implementing a certificate pinning.
The suggested, additional end-to-end encryption has not been implemented.

• We found various small to medium vulnerabilities and bugs which have been ad-
dressed by the project. These are all documented in the following document.

• We have found various vulnerabilities in supporting systems that area not in the
scope of the public security test. Most of these have been addressed by the respec-
tive system owners, some were fixed, other mitigated. For the system with most vul-
nerabilities, an internal project has been started for a complete code refactoring.

There are a few security concerns that lie outside the scope of this document but should be
mentioned, nevertheless. One is the overall security of the smartphone, such as revealing
the identity by the name of the device (“Max Muster’s iPhone) or by outdated OS versions
with known vulnerabilities, especially in the Bluetooth stack. Another noteworthy risk are the
devices of medical staff. If such a device gets infected, an attacker might generate authenti-
cation codes and could potentially flood the system with wrong infection data.

Protocol

CSIRT FOITT / GovCERT has reviewed the protocol from EPFL: It is very robust and re-
spects privacy to a high degree. We have made various inputs to further strengthen the pro-
tocol, most of which have been received and implemented. The protocol has also been re-
viewed by various other groups. We are convinced that the risk at the protocol level is very
low as long as the relevant framework conditions are taken into account during the imple-
mentation.

How we tested

Testing the protocol did happen only by reviewing the published specification and discussing
it with Carmela Troncoso and her team.

Ensuring the privacy of seed uploads

The most serious issue we have found during our test reflects that in the first iteration, the
low-cost protocol version has been implemented and that the environment was not properly
considered.

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 3 von 20

• There were different DNS endpoints to route the traffic to the various URIs.
• Anyone controlling DNS servers (e.g. Google, Cloudflare but also ISPs or companies)

can tell who queried a certain DNS at a certain time.
• Uploading a seed is involved with a known sequence of DNS requests and can there-

fore be detected by monitoring DNS alone.
• The same applies to an organization that can monitor the traffic, e.g., a company or

an ISP.

This may lead to an unmasking of the user that uploads his/hers seed in the case of a posi-
tive test.

The protocol addressed this fact in the second variant by proposing the usage of dummy
POST requests. We suggested implementing these into the current version which has been
done by the project. An interesting question was, how often such POST request needs to be
done to ensure anonymity without creating an overload on the backends. Both EPFL and
GovCERT/CSIRT came to the conclusion that only few POST requests are needed to ensure
a high probability that no one can differentiate a real infection POST request from fake re-
quests.

Ensuring the privacy of end users distributing Bluetooth EphIDs

We looked at how the creation of the EphIDs is proposed by the protocol and did not find any
issues as long as the pseudo random number generator is good and used correctly.

One inherent problem is the exposure of Bluetooth itself as this might lead to some degrada-
tion of the user’s privacy, e.g. by exposing the name of the phone (“Mikes iPhone”). This
however is neither the fault of the protocol nor the implementation.

The usage of Bluetooth is the best method in our opinion to have a commonly available pro-
tocol without sacrificing too much privacy, e.g. compared to using geolocation information
from the phone. However, it must be clearly stated, that Bluetooth had and is going to have
vulnerabilities which may expose a device. Especially worrisome are older, non-patchable
Android devices.

Replay attacks in order to poison the system

Replay attack is the only real sabotage possibility we could find in the protocol: An attacker
can collect EphIDs of people with a high probability of future positives with a very sensitive
receiver, e.g., near a drive-in test center or a hospital in general, send these via internet to a
very different location where a lot of non-infected people are expected (like in residential ar-
eas), and replay them there using a very strong Bluetooth signal. This would cause a lot of
false detections.

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 4 von 20

Eavesdropping the EphIDs

An attacker who is in proximity of the victim can eavesdrop the EphIDs. Currently, no de-
fense against that is implemented. EPFL proposed spreading the EphID across low-energy
beacons using k-out-of-n secret sharing. However, this is not implemented, and it is not clear
if this can be done using the Google/Apple APIs in the future.

Technical implementation architecture
We did analyze the technical architecture and had a few discussions about certain elements,
especially about the usage of a CDN. Basically, three approaches were discussed:

1. All traffic passes a CDN.
2. Only (the privacy irrelevant) GET requests are passed through the CDN.
3. No CDN is used at all.

The project decided to go with the 2nd approach using the CDN for the GET requests only.

How we tested

We reviewed the architectural specifications / drawings together with the architects at FOITT.

Usage of CDN

The usage of a CDN (in that case Amazon AWS) has advantages and disadvantages:

• It makes the whole system much more resilient against overloads as well as DDoS
attacks.

• It gives additional flexibility by easily adding resources upon need and at very short
notice.

• It has some privacy drawbacks that are larger or smaller depending on the chosen
implementation.

• It adds an additional layer of complexity.

In order to combat a DDoS attack efficiently, especially on the application layer, TLS termina-
tion must be in place on the CDN, which raised privacy issues, especially for the transfer of
the POST requests of a user telling the system that he/she is infected and uploads the
seeds.

End-to-end encryption of POST parameters

We proposed using a simple asymmetric encryption of all POST parameters in order to gain
the following advantages:

• Being able to use a CDN in case of performance issues / DDoS attacks against the
backend.

• Adding an additional layer of security if a problem with the certificate pinning should
occur.

The project decided against this implementation in the first version but instead chose to rely
on certificate pinning only. If the pinning is done properly this should not lead to an additional
exposure of the data being transmitted as any TLS inspection would fail and lead to a termi-
nation of the TLS session.

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 5 von 20

Introduction to Code and Configuration Tests

How we tested

We chose a greybox approach whenever possible to ensure as much testing as possible in
the shortest timeframe. While this approach requires having both code, documentation and
services running to fully perform the planned activities, it ensures that the live system indeed
matches the expected concept and protocol. Implementation and operational aspects are of-
ten error prone and thus security relevant, while being hard to audit from a blackbox perspec-
tive. Furthermore, the system's management is one of the key aspects where the public
needs to have a high trust as the publication of the source code will not answer questions on
how the code is actually installed and operated.

Backends – Code and Configuration

Black Backend

VULNERABILITY EXPLANATION (IF NEEDED) STATUS
UNHANDLED ERROR
CONDITIONS

Unhandled error conditions lead to info
leaking on https://www.codegen-
d.bag.admin.ch showing the actual
hostname.

Fixed

INFORMATION LEAK-
AGE

Calling the URL (https://codegen-ser-
vice-a.bag.admin.ch/actuator/health
) leads to information disclosure.

Fixed

EXTERNALLY HOSTED
WEBSITE

www.covidcode.ch is hosted exter-
nally, changing Name Resolution does
not follow the same authentication and
authorization principles as for “normal”
admin.ch domains

Open, migration is
planned

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 6 von 20

Red Backend

VULNERABILITY EXPLANATION (IF NEEDED) STATUS
INFO LEAKAGE Calling the URL https://www.pt-

a.bfs.admin.ch/v1/config results in in-
formation leakage as the server re-
sponses behind the CDN show its ac-
tual hostname:
Response:
404 Not Found: Requested route (RE-
DACTED) does not exist.

Fixed

INFO LEAKAGE Calling the URL
https://d27mnw3eab46ei.cloud-
front.net/v1/config
results in information leakage as the
server responses behind the CDN
show its actual hostname:
Response:
404 Not Found: Requested route (RE-
DACTED) does not exist.

Fixed

LARGE KEYS When reporting keys (Post to /v1/ex-
posed), a Key is normally 32 bytes
long (b64 encoded 44 bytes).
The endpoint allows for reporting keys
with sizes up to 2000 bytes. If the key
size is bigger then the request results
in a database error.

An attacker who is able to generate
valid JWT or bypass the Token valida-
tion could generate large buckets
which could lead to massive data con-
sumptions on server and customer
side.
While this would be also possible with
32 byte keys, the number of requests
needed for the same outcome would
be 60 times higher.
Overall the risk of someone abusing
this technique is minimal as he needs
to be able to generate a lot of valid
JWT Tokens (or bypass the validity
check) in a short amount of time.

Recommendations
Validate the key size before writing it
to the database.

Fixed

EXTERNALLY ACCESSI-
BLE INTERNAL URL

The URL https://identity-a.bit.ad-
min.ch/realms/bag-pts-test should only
be accessible from within the federal
network.

Fixed

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 7 von 20

Further tests without findings

JSON Web Token validation

The JWT validation is an essential part of the red backend. If the token validation can be by-
passed or if a token can be use multiple times an attacker could send fake infections to the
backend to create false positive infection alerts.

Multi-Use
To ensure that a JSON Web Token can only be use once, the backend stores the UUID pre-
sent (and signed) in the token to the database. If the UUID is already present, the request is
denied (401 Unauthorized). Additionally, the tokens are short lived and expire after a short
timeframe.

Invalid signature
If the signature is invalid, the server responds with 401 Unauthorized and the reported key
will not be stored in the database.

None algorithm
A well-known issue with JWT is the usage of "none" algorithm to bypass the signature check
(https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/)
Using https://github.com/ticarpi/jwt_tool we generated various requests and confirmed that
the backend is not vulnerable to this attack. We did not find a way to bypass the signature
check this way.

Fuzzing
We did a “fuzzing” of the backend to find potential undocumented accessible files/paths on
the server without any unexpected results.

Source-Code analysis
While testing we did a source-code analysis of the backend, which did not yield in any new
findings.

Smartphone App Code: iOS (pre-gaen version)

Version tested in this document: 200504.2152.338, commit: 457270a (May 5, 2020). Note
that several new updates occurred meanwhile (until May 8, 2020). According to comments,
the changes are only affecting the Bluetooth proximity algorithm itself, which most probably
don’t have an impact on these results, as this algorithm is not security relevant.

Cryptography and TLS

Note: As soon as the Apple API will become public, cryptographic functions will be done in-
side this API. So the remarks in this section only refer to the version used before this API is
published.

• Random number generator used to generate EphIDs: The SDK calls https://devel-
oper.apple.com/documentation/security/1399291-secrandomcopybytes from the
standard library, which, according to docs, generates an array of cryptographically se-
cure random bytes.

• SHA256 (CC_SHA256), AES and HMAC are all used from the standard library as well
and as such out of scope of this analysis and considered as correct.

• The code implements the protocol as described in the low cost design of DP3T.

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 8 von 20

As the project decided against an end-to-end encryption of the sensitive POST parameters, it
was decided to do a certificate pinning:

• Pinning the certificate for the configuration downloads and the GET downloads to
Quovadis Intermediate certificate.

• Pinning the certificate for the POST requests to the SubjectPublicKeyInfo.

Certificate pinning could be verified in our lab:

• When trying to be run over an SSL proxy (verified with Burp professional suite), no
SSL connection happened.

• When certificate pinning was turned off in the code (https://github.com/DP-3T/dp3t-
app-ios-ch/blob/develop/DP3TApp/Logic/Networking/Base/URLSession%2Bpin-
ning.swift, setting useCertificatePinning to false on lines 27 and 29), the connections
worked, which serves as a negative control test

• Certificate pinning worked for all types of requests.
One small issue was forwarded to Ubique; in case of a WLAN SSL proxy that breaks open
SSL, the user gets a cryptic error message in case he tries to upload a key (“Fehler – Abge-
brochen – UNKNW”) which should probably be made clearer; it will probably be fixed in one
of the next releases.

Storage

The daily secret keys used to generate the EphIDs are stored the iOS keychain as an array
named org.dpppt.keylist of structures, each containing a date day, the key keyData,
and a description string. iOS Keychain is considered as a secure and encrypted storage.

The EphIDs for one day are also stored in the iOS keychain as a structure
org.dpppt.ephsIDs containing a date day, and an array EphIDs of data blobs. iOS Key-
chain is considered as a secure and encrypted storage.

Whenever a new list of EphIDs is created at UTC midnight, the previous list is overwritten.
Daily secret keys older than 21 days are removed.

Contacts collected during normal operation (i.e. EphIDs broadcast by other devices and rec-
orded by our device) are stored in an SQLite database table named contacts with columns
id, date, EphID, windowsCount (representing the estimated contact time), and associ-
ated_known_case (initially set to nil and updated with an id in the known_cases table as
soon as a match with an infected person was actually found).

The timestamp of the contact is stored with the granularity of currently 2 hours, see
DP3TSDK/utils/ContactFactory.swift:

let bucketTimestamp = timestamp -
timestamp.truncatingRemainder(dividingBy:
Default.shared.parameters.networking.batchLength)

This is in a slight contradiction to the DP3T Whitepaper, which states:
Other smartphones observe these EphIDs and store them together with the duration
and a coarse indication of time (e.g., “April 2”).

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 9 von 20

It can be argued whether a 2-hour granularity is coarse enough. The underlying problem is
that a finer granularity makes it easier for a warned person to identify the positively tested
person which might have infected her. However, this is a local problem, and the timestamp,
while stored in the database and as such available to the user via a memory dump or
backup, is not actually displayed by the app to the warned user. It can also be argued
whether these timestamps should really be kept secret from the user to protect the privacy of
the positively tested patient, or at the opposite made explicitly available to make her risk as-
sessment easier. The granularity of the timestamp is basically a tradeoff decision between
preserving as much privacy as possible vs giving the user precise information about a poten-
tial infection. For the GAEN version, this question became irrelevant as the time resolution is
given by the API that is used.

This contact table is not stored in a protected way, but this is not considered as a serious
problem, as only encrypted EphIDs are stored; however, as soon as the Apple API is availa-
ble, this part of the data will most probably be stored in a more secure way.

Known cases downloaded from the backend are also stored in a local SQLite database
called known_cases using columns id, batchTimestamp, onset, and key. This data is not
stored in a protected way; but as this data is downloaded from the backend and public any-
way, this is not considered as an issue.

Functional Issues (not security related)

Several small issues were found in the SDK and app code and reported in the git or via mes-
senger app. These problems were solved immediately:

• The URL for reporting and the one for downloading keys were swapped
(https://github.com/DP-3T/dp3t-sdk-ios/issues/53). Fixed.

• Timing for DB syncs (infected keys downloads) did not start properly, so keys were
initially not downloaded at all (https://github.com/DP-3T/dp3t-sdk-ios/issues/51).
Fixed.

• Cases where the onset date of a downloaded, infected key is older that the oldest
stored contact were checked with a wrong day offset (https://github.com/DP-3T/dp3t-
sdk-ios/issues/50). Fixed. The solution however leaves still a small window for missed
contacts in the case subsequent days (after the oldest stored contact) will be within
reach. However, the scenario is probably very rare as onset dates in downloaded
keys older that 21 days should rarely happen (e.g. if a person did not have network
connectivity for a long time).

• The timing algorithm for fake POSTs was originally randomized only once, which
would have resulted in periodic fake POSTs instead of randomized ones. Fixed.

• The timing algorithm for fake POSTs was re-initialized every time the App was put
into background, which might have caused timing of fake POSTs to not work as ex-
pected. Fixed.

• Certificate pinning could not be turned off in the code without making networking dys-
functional. Fixed in https://github.com/DP-3T/dp3t-app-ios-ch/com-
mit/db3a455f842072536dceba2180b275d5b841255c

Background Tasks

Fake POSTs are used to make it harder for an observer to detect and de-anonymize key up-
loads of people with a positive test result. They are implemented by using background tasks
in iOS (BGProcessingTask) which should trigger once all ~5 days. Unfortunately, the
scheduling algorithm of Apple is not predictable, so it’s not sure these tasks are activated as
expected.

Moreover, as these tasks only occur when the device is idle, but real POSTs occur when the
device is not idle, a network observer might be able to differentiate between fake and real

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 10 von 20

POSTs by just observing for the presence or absence of other network traffic caused by the
device.

One still not completely transparent issue lies in the background tasks used to download new
keys from the backend (DB sync) on one hand, and to initiate fake POSTs on the other hand:

• For a DB sync, a BGAppRefresherTask with ID org.dpppt.synctask is sched-
uled all 15 minutes. If at least 2 hours are passed since the last sync, one batch for
each rounded 2-hour period is requested from the backend for DB sync. This syncing
process seems to work well on one tested device, while on another, they only oc-
curred after the app was taken into foreground. This behavior is bad as it prevents a
user from being warned until she actually puts the app into foreground. Unfortunately,
the device where these background tasks worked fine, dropped into the non-working
behavior after rebooting it. We assume this problem might disappear as soon as the
new Apple API is available, because they announced a prioritized version of it
(https://developer.apple.com/documentation/exposurenotification/build-
ing_an_app_to_notify_users_of_covid-19_exposure) :

“The app uses a background task to periodically check whether the user
may have been exposed to an individual with COVID-19. The app’s
Info.plist file declares a background task named com.example.apple-
samplecode.ExposureNotificationSampleApp.exposure-noti-
fication. The BackgroundTask framework detects apps that contain the
Exposure Notification entitlement and a background task that ends in ex-
posure-notification. The operating system automatically launches
these apps when they aren’t running and guarantees them more back-
ground time to ensure that the app can test and report results promptly.”

• For fake POSTs, a BGProcessingTask with ID ch.admin.bag.dp3t.fak-

erequesttask is scheduled using a Poisson distribution initiated on average once
all 5 days. This time period was reduced to 1 hour for testing – however, it was not
possible to actually observe such a fake POST in our test devices. This does not
mean it does not work – but according to Ubique, the time scheduling for these back-
ground tasks can’t be predicted. We consider this as a still open issue and there
might be some feedback from Apple regarding the issue.

Old iOS devices

The current implementation requires at least iOS version 13. Also, the announced Apple API
will only be available for iOS 13. Currently, this excludes devices older than 4 years – the
oldest device able to run iOS 13 is the iPhone 6s and SE, while the standard iPhone 6 can
only run iOS 121. According to Comparis2, this might affect around 15% of all iPhone users,
but we don’t have reliable data about this. It is unknown if maybe Apple will make the API
also available for iOS 12, or make iOS 12 available for older devices.

JWT signature checks

Server responses carry a Signature: header, used as a JWT signature. We tried to modify
a configuration update response such that an app update would be enforced, without chang-
ing JWT. This configuration check was not accepted, which suggests the JWT check works
for configuration updates.

To repeat the test for DB syncs (GET /v1/exposed requests), a proximity situation of 2 iOS
devices was simulated in the lab. One of the devices was then reported as infected. The DB
sync request the other devices initiated at the next bucket time interval was intercepted and
the JWT signature modified to enforce a signature check failure. As expected, no warning

1 https://www.apple.com/ios/ios-13/
2 https://www.comparis.ch/telecom/handy-gadgets/analyse/smartphone-markt-schweiz

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 11 von 20

was shown to the user, so it is assumed the JWT check also works for DB syncs. When the
next DB sync went through unmodified, the warning appeared, as it should; this serves as a
positive control check.

Code analysis of https://github.com/DP-3T/dp3t-sdk-ios/blob/master-al-
pha/Sources/DP3TSDK/utils/JWTVerification.swift shows that

• JWT signatures are checked for configuration updates as well as for DB syncs using
the standard library SwiftJWT.

• The accessToken value returned by the codegen server as a validation response to
a TAN is not verified by the app, though it could. But this is not a problem, as this
value is subsequently sent to the publish server in an Authorization: Bearer
header and should be verified at this place.

• Public keys for signature checks are hardcoded.

Smartphone App Code: Notes about iOS gaen version

We made a short comparison to the new version used since May 20 using the Apple API,
based on commit 27301e2 (May 22 2020) of https://github.com/DP-3T/dp3t-app-ios-
ch/tree/feature/exposurenotification-entitlement, and could verify (as expected):

• Contact data is no longer stored in a SQL database inside the app, but handled by
the OS. Apps can’t access this data directly anymore. We could not verify if the data
would be available in a jailbroken device, but assume it would be.

• BT communication and encryption of normal EphIDs are now also done by the OS.
• Still done inside the app are fake POSTs; this is the only place the random number

generator is still used

One general remark about the iOS situation is that the exposure API is only available on
iPhones, not on iPads (which is not considered a problem). As expected, the API is only valid
on devices that can load iOS 13.5 (iPhone 6s and upward).

Background tasks on one standard device we were using are now much more reliable; they
occur regularly, also while the device is locked, and we could also observe fake POSTs. One
strange behavior is that warnings to the user currently seem to occur later than necessary:

• Device A uploads diagnosis keys for the previous 3 days.
• Device B (which had contact with device A on all days before) downloads these keys

a few hours later (around noon).
• Nevertheless, device B does not emit an infection warning until 2AM of the next day

(Sunday), but then for all 3 days before. We did not start the app manually until then,
but used device B for other stuff, so we can’t say if that might have triggered a warn-
ing.

One reason for this might be that the number of API calls the app is allowed to make is re-
stricted. It comes with a price of a delay up to 1 day, 12 hours on average. The issue was re-
ported to Ubique.

A problem we observed generally with background tasks is that on our second test device
(an iPhone SE) they did not occur at all; this device only communicated whenever it was un-
locked and the app taken into foreground. Note that this is only about internet traffic (data-
base syncs, fake POSTs), not the Bluetooth activity itself, which we assumed worked as ex-
pected. However, such a behavior would mean a user is not warned for days (until she man-
ually takes the app into foreground). Currently we have no explanation for this behavior; it
might be either due to special lab environment, or due to the fact this device did not have a
SIM card, but only worked via WLAN. The situation will be evaluated further. It has no direct
security impact, except the fact fake POSTs do not happen and so a real key upload can be
found out easily.

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 12 von 20

Fake key uploads: These now happen in a clean way. Generally, we see the following time-
line:

• Config file is requested.
• At nearly the same time 10 GET requests are done to download exposure keys (DB

sync).
• With a random delay of 20-30 seconds, a fake TAN is generated and uploaded.
• And shortly after, the fake keys are uploaded. It is correctly made sure that fake and

real key uploads have about the same size.
• Immediately afterwards, another database sync (10 GET requests) occur. This does

not seem necessary, but is the same behavior as in the case of a real key upload.

This looks good and can’t be easily distinguished from real key uploads. Two points must be
noted though:

• The time delay of 20-30 seconds is pretty short for simulating entering a 12 digit TAN.
This was implemented this way because Apple restricts the maximum duration of
such background tasks.

• When in the future database sync tasks are minimized (they seem to occur much
more often than required), one has to be careful to adjust the fake POSTs accord-
ingly.

• Mistyped TANs in real uploads still stand out, due to the missing local validation digit.
But this problem is not unique to the iOS app.

One strange feature about database syncs is the fact that batches now seem to be 24 hour
batches instead of 2 hour batches as in the pre-gaen version, and these batches refer to va-
lidity of batches instead of publish date. The reason for this implementation lies in the nature
of the API: it is required to feed it all exposure keys together for a specific day and then do a
risk calculation day per day. This differs from the original dp3t approach. Also, no keys are
buffered. As an upload can affect several earlier days, previous batches can be changed at a
later point in time. Nevertheless, the sync request could be one single GET request that
would return 10 days in one request; also a download sorted after publish dates would still
be possible, if the downloads were locally stored in the app and sent to the API in a sorted
manner. This observation does not affect security though, but is a question of network load
versus local memory storage. Issue was discussed with Ubique and it is expected Apple will
decrease some restrictions to solve it.

Smartphone App Code: Android (pre-gaen Version)

Android manifest

We looked at the manifest and found one issue, which has been corrected in the meantime:

VULNERABILITY EXPLANATION (IF NEEDED) STATUS
MANIFEST OF ANDROID
APP ALLOWS BACKUP
OF DATA WHICH MIGHT
LEAD TO A PRIVACY IS-
SUE.

N/A Fixed

The permissions are reasonable and reduced to what is necessary. Two permissions are es-
pecially noteworthy and are due to the way Bluetooth and the app interact:

• android.permission.ACCESS_FINE_LOCATION: Is needed as Google considers
Bluetooth a location device as well. The app does not access GPS or location data.

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 13 von 20

• android.permission.BLUETOOTH_ADMIN: Is needed due to the way the app works.
This permission may however also be used to pair devices. We do not see any such
code, but basically as Bluetooth is on and working with this permission an attacker
might send a Bluetooth pairing request. This is however not a vulnerability but due to
the way the Bluetooth works.

Storage

There are no findings here: The app uses EncryptedSharedPreferences as suggested by
google. See https://developer.android.com/topic/security/data. All Keys and EphIDs are
stored within Objects of type EncryptedSharedPreferences. There are two containers, one
for codes entered by the user and jwt tokens, one for EphIDs and keys (class CryptoModule).
The list of EphIDs is automatically cut at specified length at each update.

Background tasks / Fake requests

There is a background task doing fake requests. Requests could be observed. The worker is
implemented in the class FakeWorker, extending class android.work.Worker. Delay is calcu-
lated using class ExponentialDistribution. The requests did work as expected, also when the
device was locked.

Database injections

Even if the data is stored in a SQLite database, we did not find any possibility to inject or ma-
nipulate the data being stored.

Informing about an infection:

We successfully entered a covidcode. The key was accepted and distributed by the red sys-
tem. An app installed on an iPhone successfully displayed a warning regarding a possible in-
fection. After that the app stopped broadcasting EphIDs.

Communication

Communication with the backend is implemented using retrofit2 (uses okHttp as backend)
and okHttp “standalone”. We did not find any special issues.

HTTP headers seen where

okHttp 3.12.0
ch.admin.bag.dp3t;1.0;Android;29

Crypto

Testing https://pt1.bfs.admin.ch/v1/onset no inline signature (black backend), certificate pin-
ning did not work.

Testing https://codegen-service.bag.admin.ch no inline signature (black backend), certificate
pinning did not work (name missing @class CertificatePinning?).

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 14 von 20

Certificate is only been partially effective. Pinning did not work for requests targeting
https://www.pt.bfs.admin.ch/config/v1. All other requests were interceptable. This can be
tested by using an intercepting proxy and adding the proxy’s certificate to the device under
test. The debug build must be used as only that build accepts root certificates in users trust
store, as defined in network_security_config.xml (for the prod release the proxy’s certificate
must be stored in the system's trust store). Disabling pinning of single backends can be done
in the file CertificatePinner.java. CertificatePinner.java lists the names of different endpoints,
however the names of the issuing CA's seem to be missing there. Check the list in Certifi-
catePinner.java against what has been defined by the project.
Also specify procedures in case a certificate needs to be replaced immediately. Consider
adding additional certificates as a reserve.

The url https://www.pt.bfs.admin.ch/v1/exposed is interceptable, certificate pinning did not
work.

• Removing signature headers leads to an error, i.e., works as it should.
• When changing the signature the app displays error in red letters, i.e., works as it

should.
• When changing the content th app displays error in red letters, i.e., works as it should.

Testing https://www.pt.bfs.admin.ch/v1/config

• When applying automatic update at proxy (replacing "forceUpdate" by "forceUpdate-

modified"), the application does not start. Works as it should and certificate pinning
seems to be ok.

This issue has been fixed in later releases.

VULNERABILITY EXPLANATION (IF NEEDED) STATUS
CERTIFICATE PINNING
WORKING ONLY PAR-
TIALLY

Certificate pinning is used to ensure
end-to-end encryption of the mes-
sages being transported without an at-
tacker being able to MITM by inter-
cepting the TLS connection.

Fixed

Signatures

The red backend signs its body content in its responses. The signature is within a HTTP
header named "Signature". The corresponding public key is stored in the app's source code.

Error Handling

Error handling has been implemented correctly in the last tested version. The first version
lacked a proper error handling during the tests, but this has been corrected.

VULNERABILITY EXPLANATION (IF NEEDED) STATUS
ERROR MESSAGES
WERE DISPLAYED UN-
FILTERED TO THE
USER (E.G. ERROR
MESSAGES FROM THE
BACKEND)

N/A Fixed

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 15 von 20

Timing / Dates

Testing in different time zones: No tests have been done as all timestamps are in UNIX
epoch time format and therefore free from time zone information.

Reset / Delete / Reinstall

The applications data is stored in the directory /data/data/ch.admin.bag.dp3t. The directory
and all its content are removed when the application is deinstalled.
Deleting and reinstalling the app did work flawlessly.

Data storage

Handshakes and contacts are stored within a SQLite database (/data/data/ch.ad-
min.bag.sp3t/databases/dp3t_sdk.db). Handshakes are stored in a table named “hand-
shakes”. After connecting to the database interactively we could observe that the hand-
shakes (EphIDs with timestamps and signal strength indicator) are deleted as soon as the
current epoch moves on.
Contacts are stored in the table “contacts”. After changing the phones system time (by add-
ing 4 weeks) all entries in these tables were deleted as expected. There is also a table
named known_cases that is unencrypted but as already mentioned above this should be no
problem as the information stored within that table is public anyway.

Smartphone App Code: Notes about Android gaen version
Using the gaen API of Google, some functionality is now implemented within the Exposure
Notification Module, which is distributed to the phones by Google play services. We did a
short analysis of some changes that had been introduced with the gaen Android version of
the app. Noteworthy results are listed below:

Android manifest

The app now only uses the following two permissions:

• android.permission.BLUETOOTH: Is needed to use the gaen API
• android.permission.INTERNET: Is needed for backend communications

ACCESS_FINE_LOCATION and BLUETOOTH_ADMIN are not needed any more.

Storage

The keys and EphIDs are now stored within the following (implementation specific) directo-
ries in LevelDB databases:

• /data/data/com.google.android.gms/app_contact-tracing-contact-record-db/ (contacts)
• /data/data/com.google.android.gms/app_contact-tracing-self-tracing-key-db/ (keys)

Only the keys are readable to the health authority applications and only by using the API. Ac-
cording to Google the API will not be available to all other apps. By using a jailbroken phone,
it was possible to extract keys from the database. Depending on the Android version and
configuration those databases can be encrypted at a file or disk level.

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 16 von 20

As those locations are part of the Google play services app. We also tested whether those
databases could intentionally or accidentally get backed up to Google Drive, which might
lead to a privacy issue. Using the phones user interface and the command line interface
(bmgr), it was not possible to backup those contents.

To delete the databases the user has two options:

• Deleting ALL health authority apps that are installed on the phone. The data will be
removed during the deinstallation of the last app using the API.

• Using the GUI of play services by pressing a button

This could lead to some confusions: Should a user have installed multiple health authority
apps, by removing one of them he could mistakenly believe he had deleted all data although
the data would still be there.

Databases

The database holding keys and EphIDs has been removed from the app.

Bluetooth

The whole Bluetooth functionality is now handled by the Exposure Notification Module.

Key export, automatically deleting older data

When exporting the keys to the app, the user is asked for confirmation by a dialog. The dia-
log mentions a maximum key range of 14 days. When testing this functionality by setting new
dates manually, we observed that it was possible to export more than 14 keys with a time
range of more than 8 weeks. At the moment of this writing we do not know if during normal
operations those keys would have been deleted. However, both the Exposure Notification
Module and the app should make sure it is not possible to export and save more keys and
EphIDs than absolutely necessary.

Keycloak server

VULNERABILITY EXPLANATION (IF NEEDED) STATUS
EXPOSED ADMIN IN-
TERFACE OF KEY-
CLOAK SERVER

N/A Fixed

WEAK PASSWORD ON
KEYCLOAK SERVER

N/A Fixed

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 17 von 20

Domain Security

DNSSEC

While DNSSEC is in place for admin.ch, there are endpoints that are not protected:

DOMAIN DNSSEC REMARK
*.ADMIN.CH Yes -
*CLOUDFRONT.NET No We consider this being a risk as it is an entry point to

the whole system and if it is manipulated, an attacker
has several attack vectors at hand.

SWISSPTAPP.CH No We consider this being a risk as it is an entry point to
the whole system and if it is manipulated, an attacker
has several attack vectors at hand.

COVIDCODE.CH YES -
*HIN.CH No The implementation is currently planned by HIN and

should be ready in Q3 2020.

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 18 von 20

TLS Checks of the endpoints
We tested all endpoints if the TLS settings are reasonable. We tested both by hand and us-
ing ssllabs.com. Status is being considered OK, if Grade A is reached and an officially used
Certificate of the Federal Administration is being used.

ENDPOINT URL STA-

TUS
REMARK

CODEGEN-SERVICE-D.BAG.ADMIN.CH OK
CODEGEN-SERVICE-T.BAG.ADMIN.CH OK
CODEGEN-SERVICE.BAG.ADMIN.CH OK
IDENTITY-A.BIT.ADMIN.CH OK
IDENTITY-R.BIT.ADMIN.CH OK
IDENTITY.BIT.ADMIN.CH OK
WWW.COVIDCODE-A.ADMIN.CH OK
WWW.COVIDCODE-D.ADMIN.CH OK
WWW.COVIDCODE-T.ADMIN.CH OK
WWW.COVIDCODE.ADMIN.CH OK
WWW.PT-A.BFS.ADMIN.CH OK
WWW.PT-D.BFS.ADMIN.CH OK
WWW.PT-T.BFS.ADMIN.CH OK
WWW.PT.BFS.ADMIN.CH OK
WWW.PT1-A.BFS.ADMIN.CH OK
WWW.PT1-D.BFS.ADMIN.CH OK
WWW.PT1-T.BFS.ADMIN.CH OK
WWW.PT1.BFS.ADMIN.CH OK
WWW.COVIDCODE.CH Weak

Ciphers
TLS 1.0 still supported,
CA not used by Federal
Administration

WWW.SWISSPTAPP.CH Un-
known

DNS ServFail

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 19 von 20

Security Headers on endpoints
For API endpoints we tested if this minimal set of headers is provided by the server:

• Strict Transport Security: max-age=XXXXX; includeSubDomains
• X-Content-Type-Options: nosniff
• X-Frame-Options: DENY

Red Backend

ENDPOINT URL STATUS
HTTPS://WWW.PT-D.BFS.ADMIN.CH/V1 OK
HTTPS://WWW.PT-A.BFS.ADMIN.CH/V1 OK
HTTPS://WWW.PT-T.BFS.ADMIN.CH/V1 OK
HTTPS://WWW.PT.BFS.ADMIN.CH/V1 OK
HTTPS://WWW.PT1-D.BFS.ADMIN.CH/ OK
HTTPS://WWW.PT1-A.BFS.ADMIN.CH/ OK
HTTPS://WWW.PT1-T.BFS.ADMIN.CH/ OK
HTTPS://WWW.PT1.BFS.ADMIN.CH/ OK

Black Backend

ENDPOINT URL STATUS
HTTPS://WWW.COVIDCODE-D.ADMIN.CH/ OK
HTTPS://WWW.COVIDCODE-A.ADMIN.CH/ OK
HTTPS://WWW.COVIDCODE-T.ADMIN.CH/ OK
HTTPS://WWW.COVIDCODE.ADMIN.CH/ OK
HTTPS://CODEGEN-SERVICE-D.BAG.AD-
MIN.CH/

OK

HTTPS://CODEGEN-SERVICE-A.BAG.AD-
MIN.CH/

OK

HTTPS://CODEGEN-SERVICE-T.BAG.AD-
MIN.CH/

OK

HTTPS://CODEGEN-SERVICE.BAG.ADMIN.CH/ OK

Keycloak

ENDPOINT URL STATUS
HTTPS://IDENTITY-R.BIT.AD-
MIN.CH/REALMS/BAG-PTS/.WELL-
KNOWN/OPENID-CONFIGURATION

NOK (X-Content-Type-Options /
X-Frame-Options missing)

HTTPS://IDENTITY-A.BIT.AD-
MIN.CH/REALMS/BAG-PTS/.WELL-
KNOWN/OPENID-CONFIGURATION

NOK (X-Content-Type-Options /
X-Frame-Options missing)

HTTPS://IDENTITY.BIT.AD-
MIN.CH/REALMS/BAG-PTS/.WELL-
KNOWN/OPENID-CONFIGURATION

NOK (X-Content-Type-Options /
X-Frame-Options missing)

HTTPS://IDENTITY-R.BIT.AD-
MIN.CH/REALMS/BAG-PTS

NOK (X-Content-Type-Options /
X-Frame-Options missing)

HTTPS://IDENTITY-A.BIT.AD-
MIN.CH/REALMS/BAG-PTS

NOK (X-Content-Type-Options /
X-Frame-Options missing)

HTTPS://IDENTITY.BIT.AD-
MIN.CH/REALMS/BAG-PTS

NOK (X-Content-Type-Options /
X-Frame-Options missing)

TLP WHITE

CSIRT FOITT & NCSC / GovCERT.ch Seite 20 von 20

Out of Scope Threats
In our opinion, one of the greatest threats to the overall system does not arise from the com-
ponents used, for which we have not identified any serious vulnerabilities, but from vulnera-
ble end-user devices.

Supporting systems

During the tests, we found several issues in supporting systems that were not within the
scope of the test. We reported all issues to the responsible parties. Most of the findings have
already been fixed or are in the process of being fixed.

Mobile devices

A mobile device can become vulnerable through weaknesses or vulnerabilities in the Blue-
tooth stack, this is especially true for Android devices due to the large number of manufac-
turer-specific modes. If Bluetooth is switched on permanently, this leads to an increased ex-
posure of the mobile device.

A device infected with malware can also cause data to flow off. However, the structure of the
protocol does not demask the users involved.

The disclosure of personal information such as device names in the style of "Max Muster's
iPhone" also leads to a potential unmasking of the user if only a few other Bluetooth devices
are nearby. However, this is not the fault of the Proximity App and would also lead to the
user being unmasked if he or she has activated Bluetooth without the Proximity App.

Devices of medical stuff

An infection of a medical person's device that can issue Authcodes would allow an attacker
to issue false codes and thus flood the system with false infection messages. Infections of
medical devices are in principle very sensitive, on the one hand because of the medical data
stored on them, on the other hand because of the enormous damage potential in relation to a
targeted attack with a lateral movement and the subsequent distribution of ransomware. We
consider the medical personnel's end devices to be "out of scope" for this test but would like
to point out the considerable risk in this area.

		2020-06-02T22:34:37+0200
	incidents@govcert.ch

