

CSIRT-FOITT/GovCERT-CH

TLP WHITE

Risk Estimation and Recommendations for Swiss Proximity Tracing
App

Author: csirt@bit.admin.ch & outreach@govcert.ch
Topic: Risk Estimation and Recommendations for Proximity Tracing App
Date: 25th of May 2020
Classification: TLP WHITE

Introduction

CSIRT FOITT and GovCERT.ch have tested all components of the Swiss Proximity Tracing
System during several weeks. We have accompanied the involved development teams
during this process while continuously reporting bugs and suggesting risk mitigating
measures. We believe that the application as a whole has reached a good state in terms of
security and privacy. The whole proximity tracing system consists of the following
components:

COMPONENT DESCRIPTION
RED FRONTEND The RED frontend is basically the app that is interacting with the

user and the Google/Apple API in order to do the proximity
tracing.

RED BACKEND The RED backend is the server-side component that is used to
receive information and distribute information about an infection
person by distributing their seeds.

BLACK FRONTEND The BLACK frontend is interfacing with medical personnel that
confirms an infection and issues an authentication code that
needs to be sent alongside the seeds and by doing so
confirming an actual infection message.

BLACK BACKEND The BLACK backend is the server-side component that is used
to issue authentication codes.

SUPPORTING SYSTEMS The most important supporting systems are the authentication
components for the BLACK system. There are two, one
operated by HIN (Health Information Network) and eIAM
operated by FOITT. Other supporting systems are website but
also underlying components such as operating systems,
database server, monitoring components, etc..

CSIRT-FOITT/GovCERT-CH

TLP WHITE

Protocol

We consider the underlying protocol designed by EPFL to be very robust and well thought-
out and believe that this is the right approach for proximity tracing, especially the chosen
decentralized approach. We have identified a potential demasking of users; but with the
addition of fake POST requests, this risk has been reduced to an acceptable level. By using
fake POST requests, a concern about the anonymity of a user uploading an infection
message has been eliminated. There remains a residual risk in case a user mistypes the
authentication code while his network traffic is being monitored. The approach proposed by
EPFL by adding a 13th check digit to the authorization code computed using Luhn algorithm
would reduce the risk for many cases while – as outlined by EPFL – cannot cover all cases
when users are making typing errors. We believe that it would be a fair tradeoff between
ease of implementation and security/privacy. The project however decided against the
implementation of check digits.

Architecture

When it comes to the technical architecture, we believe the current usage pattern of a CDN
(Content Delivery Network, in our case it is Amazon) shows a reasonable balance between
privacy and resilience. The potentially more delicate POST requests are sent directly to the
FOITT backends, whereas the less sensitive GET requests are passing the CDN. By doing a
pinning of the certificate, a near end-to-end encryption is reached and should prevent all
attempts of man-in-the-middle attacks, either by companies’ proxy servers doing TLS
inspection, or by a malicious actor sitting between the user and the end points. We have
suggested to additionally encrypt the more delicate POST parameters (seed of the infected
device, resp. daily keys) asymmetrically, which is not realized at the moment. As a mitigating
measure, however, pinning is done on the certificate level, i.e. the traffic in transit cannot be
broken, as the app would notice this. One has to be aware that a certain flexibility in the
network topology is given up by this approach.
On the side of the backends, a web application firewall is in place mitigating risks further. In
case of a DDoS attack forcing the usage of the CDN for POST requests as well, a TLS
interception on the CDN level should not be made as it would risk the exposure of infected
users to the CDN operators.

Code

The code analyzed is well written and the architecture was developed with a security point of
view (choice of communication channels, use of WAF). Most vulnerabilities were found in
supporting systems and not in the core systems. We reported these vulnerabilities and
besides very few, most are already fixed.

The source code of the iOS app and Android app was partially reviewed and looks well-
structured and programmed. We did not find any big issues and bug reports have been dealt
with quickly. As currently there is a switch between the previous version that interacted
directly with the Bluetooth stack and the APIs provided by Google and Apple, we tested both
approaches, but the first one more thoroughly. The testing of the backend systems did not
reveal any critical vulnerability from within the code, but mostly parametrization issues.
These were resolved quickly.

CSIRT-FOITT/GovCERT-CH

TLP WHITE

Apart from the app, the most complex part lies within the BLACK system, which enables
authentication via eIAM and via HIN. This is where the medical staff create the authentication
codes. This system is much more complex than the RED backend and has more exposed
interfaces. However, the main risk here is not so much about leaking personal data, but
rather that someone can obtain false Auth Codes and thus smuggle false reports of
infections into the system.

There are a few security concerns that lie outside the scope of this document but should be
mentioned, nevertheless. One is the overall security of the smartphone, such as revealing
the identity by the name of the device (“Max Muster’s Iphone”) or by outdated OS versions
with known vulnerabilities, especially in the Bluetooth stack. Another noteworthy risk are the
devices of medical staff. If such a device gets infected, an attacker might generate
authentication codes and could potentially flood the system with wrong infection data.

There are still a few potential and purely functional issues of the code or underlying API that
we noticed and forwarded, but these are not security related.

Risk Estimation and Recommendation

The following table should give a short overview of our perception of risks:

Item Residual risk Remarks
Protocol Low Most possible attacks are avoided or mitigated. We

would have wished having a “real” end-to-end
encryption, but certificate pinning is in place and
reduces the attack surface. Another point that remains
is the possibility of detecting a user that enters the
Auth Code wrong and then corrects it.

Architecture Low The architecture does not have any critical issues.
The usage of CDN makes sense. If – due to a DDoS –
CDN is also needed for POST requests, no TLS
interception must be done on CDN Level.

Backends Low There are no remaining, critical vulnerabilities left
open. Due to the complexity of the black backend, we
see a larger risk exposure there, but currently have
not seen any vulnerability left open on the core
system/application.

Apps Low The apps are well developed and behave as
expected, cryptography, communication and error
handling are done correctly.

Supporting
systems

Medium Most vulnerabilities have been found in supporting
systems. As some of these are either rather aged
and/or highly complex, we believe that there is a
certain likelihood that more vulnerabilities could be
discovered there.

We recommend to closely monitor all relevant logfiles during the public security test in order
to detect any intrusion by a malicious actor and to completely reset the system after the
public security test. It is likely that researchers are going to find additional vulnerabilities that
need to be addressed and patched. It is important to understand that this is the goal of such
a test and does not mean a failure of the system and application as long as no unfixable
issues are found, or the number of the vulnerabilities reported is so large that doubts arise
about the underlying quality.

CSIRT-FOITT/GovCERT-CH

TLP WHITE

We also recommend implementing automated security tests that ensure that changes at the
code base are handled carefully and that vulnerabilities are not introduced at a later point. As
important as the development is the operational phase, which requires a good patch
management, not only for the underlying operating system, but also for all used components,
especially for libraries and frameworks. The logfiles of all systems need to be analyzed by
CSIRT on a regular base. We also recommend talking with the Identity Provider HIN about
their strategy of logfile monitoring as the authentication of medical persons is an important
part of the whole security architecture.

At the point of writing this report, there are a few minor security issues still open, but
nothing that would prevent a public security test. We believe that there is a good
chance that researchers are going to make findings, but we are confident that none of
these would put either the backend infrastructure or a user’s privacy in danger.

		2020-05-27T11:58:05+0200
	incidents@govcert.ch

